

Contextualizing Hate Speech Classifiers with Post-hoc Explanations

<u>Brendan Kennedy</u>*, Xisen Jin*, Aida Mostafazadeh Davani, Morteza Dehghani, Xiang Ren University of Southern California

ACL 2020 (Virtual) Short Paper Presentation

Paper: https://arxiv.org/abs/2005.02439

Code: https://github.com/BrendanKennedy/contextualizing-hate-speech-models-with-explanations

Bias in Hate Speech Data

Group identifiers/social group terms are disproportionately frequent in hate speech data Wiegand, Ruppenhofer & Kleinbauer (2019)

"There is a great discrepancy between whites and blacks in SA. It is ... [because] blacks will always be the most backward race in the world."

But occur in many non-hate contexts as well:

"[F]or many Africans, the most threatening kind of ethnic hatred is <u>black</u> against <u>black</u>."

Problem Statement - Hate speech models treat the presence of group identifiers as an indicator of hate speech. But what matters is the group identifier *plus context*

Understanding and Correcting Model Bias

We applied a **post-hoc explanation algorithm** (model agnostic) to quantify if models' predictions were biased towards group identifiers.

We found that false positive errors were caused by models associate group identifiers with "hate"

Our goal: neutralizing influence of group identifiers for non-hate contexts without performance loss on hate detection

Regularizing Post Hoc Explanations

Notations: w - group identifier words; x - input sentence; $s(\cdot)$ - model output; $\phi(\cdot)$ - explanation score, S - set of all group identifiers; L - loss function

Step 1. Sampling-and-OCclusion (SOC) Explanations (Jin et al., 2020)

$$\phi(\mathbf{w}) = E_{\mathbf{x}_{\delta}}[s(\mathbf{x}) - s(\mathbf{x} \backslash \mathbf{w})]$$
 Prediction difference when word w is masked

marginalized over contexts of word w around a fix-sized window $x_{\bar{s}}$

 φ (w): "How does the group identifier alone affect the prediction"?

Step 2. Regularizing Explanations of Group Identifier Terms

$$\mathcal{L} = \mathcal{L}' + \alpha \sum_{\mathbf{w} \in \mathbf{x} \cap \mathbf{S}} [\phi(\mathbf{w})]^2$$

penalizing explanation scores on group identifiers

Discourage making predictions with group identifier terms alone

Results of Regularization: Performance

Datasets Methods

- Gab Hate Corpus (**GHC**; Kennedy et al., 2020)
- Stormfront (de Gibert et al. 2018)
- NYT (News articles, non-hate stratified sample across group identifiers)
- Vanilla BERT
- Identifiers removed before training (WR)
- Regularizing Input Occlusion explanations
- Regularizing SOC explanations (ours)

Training set	GHC			
Method / Metrics	Precision	Recall	F 1	NYT Acc.
BoW	62.80	56.72	59.60	75.61
BERT	69.87 ± 1.7	66.83 ± 7.0	67.91 ± 3.1	77.79 ± 4.8
BoW + WR	54.65	52.15	53.37	89.72
BERT + WR	67.61 ± 2.8	60.08 ± 6.6	63.44 ± 3.1	89.78 ± 3.8
BERT + OC (α =0.1)	60.56 ± 1.8	$\textbf{69.72} \pm \textbf{3.6}$	64.14 ± 3.2	89.43 ± 4.3
BERT + SOC (α =0.1)	$\textbf{70.17} \pm \textbf{2.5}$	69.03 ± 3.0	$\textbf{69.52} \pm \textbf{1.3}$	83.16 ± 5.0
BERT + SOC (α =1.0)	64.29 ± 3.1	69.41 ± 3.8	66.67 ± 2.5	$\textbf{90.06} \pm \textbf{2.6}$

Results of Regularization: Term Importance

- Top 20 terms in each model (Vanilla BERT vs. SOC regularized BERT) by average SOC importance
- Change in rank importance (Δ Rank) between models
- Group identifiers highlighted

BERT	Δ Rank	Reg.	Δ Rank
ni**er	+0	ni**er	+0
ni**ers	-7	fag	+35
kike	-90	traitor	+38
mosques	-260	faggot	+5
ni**a	-269	bastard	+814
jews	-773	blamed	+294
kikes	-190	alive	+1013
nihon	-515	prostitute	+56
faggot	+5	ni**ers	-7
nip	-314	undermine	+442
islam	-882	punished	+491
homosexuality	-1368	infection	+2556
nuke	-129	accusing	+2408
niro	-734	jaggot	+8
muhammad	-635	poisoned	+357
faggots	-128	shitskin	+62
nitrous	-597	ought	+229
mexican	-51	rotting	+358
negro	-346	stayed	+5606
muslim	-1855	destroys	+1448

Conclusion and Future Work

Conclusion

- Bias can be addressed through *model enhancement* rather than *data augmentation*, by advancing explainability and developing techniques that operate on explanation algorithms like SOC

Unexplored Angles

- Our list of terms was ad hoc; lists provided by Dixon et al., 2018 can be applied
- Formal application of our approach to address fairness between social groups
- Explore other domains (e.g., Twitter), languages, and language models (e.g., GPT-2)

Paper: https://arxiv.org/abs/2005.02439

Code: https://github.com/BrendanKennedy/contextualizing-hate-speech-models-with-explanations