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Abstract

Cognitive tests used to measure individual differences are gen-
erally designed with equality in mind: the same “broadly ac-
ceptable” items are used for all participants. This has unknown
consequences for equity, particularly when a single set of lin-
guistic stimuli are used for a diverse population of language
users. We hypothesized that differences in language variety
would result in disparities in psycholinguistically meaningful
properties of test items in two widely-used cognitive tasks, re-
sulting in large differences in performance. As a proxy for in-
dividuals’ language use, we administered a self-report survey
of media consumption. We identified two substantial clusters
from the survey data, roughly orthogonal to a priori groups re-
cruited into the study (university students and members of the
surrounding community). We found effects of both population
and cluster membership. Comparing item-wise differences be-
tween the clusters’ language models did not identify specific
items driving performance differences.

Introduction

Cognitive tests are increasingly used in research on individual
differences. For example, a number of recent studies reported
correlations between speech perception in noise and working
memory (for meta-analysis, see: [Dryden, Allen, Henshaw,
and Heinrich|[2017). Widely used tests for both (Daneman &
Carpenter, |1980; Kalikow, Stevens, & Elliott, |1977) were de-
veloped without much regard for potential individual differ-
ences in language experience, however. This raises the pos-
sibility that at least some of the variability in these tasks is
related to differences in participants’ language experience, as
demonstrated in studies of higher-level language processing
(Moore & Gordon, 2015; |Wells, Christiansen, Race, Ache-
son, & MacDonald, 2009). Currently, it remains unclear how
much this robust correlation between the two tasks — found in
26 of the 30 studies surveyed by |Akeroyd| (2008) — reveals a
correlation between the target constructs or a latent variable
of language experience.

Linguists have long considered the communicative capac-
ities of every language to be equal and equally expressive
(Joseph & Newmeyer, |2012; Pellegrino, Coup, & Marsicol
2011). Guidelines from the American Speech-Language-
Hearing association on cultural competence encourage clin-
icians to take cultural variables into account in assessing
and treating language disorders and differences (American
Speech-Language-Hearing Association (ASHA), n.d.). De-
spite these commitments in allied fields, and the demon-

strable existence of multiple American Englishes (e.g. see
for review: |[Labov, Ash, and Boberg |2006; |[Schneider and
Kortmann|2004)), most cognitive tests assume ‘“Mainstream”
American English (MAE) as a default in the construction of
stimuli, potentially confounding cognitive test performance
with experience and fluency in MAE. Conversely, language
experience is not deterministically related to the usual fea-
tures that define distinct “dialects” — region, ethnicity, class,
etc. People are cosmopolitan and idiosyncratic in the lan-
guage experiences they seek out, and as a result, may be fa-
miliar with multiple language varieties, with potential conse-
quences for their performance on cognitive tests.

Statistical learning, hypothesized to underlie much of lan-
guage development (Elman), 2001} [Seidenberg & MacDon-
aldl |1999), is driven by patterns in language input. Given
different input, then, language learners will necessarily con-
struct different distributional models to generate and process
speech and language. Online speech and language process-
ing relies heavily on learned statistical regularities to facili-
tate top-down anticipatory processes. This is evidenced by
the effects of surprisal observed when these anticipations are
violated (Federmeier, Mai, & Kutas| 2005; Kutas & Hill-
yard, (1980, |1984). Given the highly demanding nature of
online speech and language processing, anticipatory mech-
anisms help lessen the cognitive effort needed to accomplish
the task. The greater the difference between the listener or
reader’s language model and the statistics of the language
material they are processing, the greater the cognitive bur-
den on the listener. For example, intelligibility levels in noise
are better for one’s own dialect than for a familiar, but less
commonly encountered dialect (Clopper & Bradlow, [2008)).
In children who prefer a non-mainstream English, familiar-
ity with “school English” is associated with performance on
literacy tests (Charity, Scarborough, & Griffin, [2004).

The current research examines the effect of variability in
language experience on cognitive tests. We hypothesized that
measuring people’s language experience indirectly, by hav-
ing them complete a “media diet” survey, would allow us to
identify distinct clusters of individuals based on their view-
ing, listening, and reading habits. We expect these clusters to
only loosely covary with the demographic factors that com-
monly define distinct “dialect” groups. This new measure



of language differences between participants thus provides a
novel aspect of individual variability that we expect to mod-
erate performance on language-based cognitive tasks. As
this measure probes the role of language directly, it may be
more informative in predicting task performance variability
than standard demographic information. To test this we re-
cruit from two populations that differ along traditional demo-
graphic lines: USC undergraduates — typically high-SES stu-
dents pursuing higher education (Facts and Figures | About
USC, In.d) — and members of the downtown Los Angeles
community — mostly African American and Latinx lower-
SES individuals, many of whom not pursuing education be-
yond high school (e.g. the zip code 90062: [US Census Bureau
n.d.). We administer the aforementioned functional hearing
and working memory tasks and expect survey responses to at
least partly predict variability in task performance. As we ex-
pect this effect to be linguistic, we also predict that language
models trained on the media sources will predict participants’
behavioral performances.

Methods
Participants

We recruited participants from the USC undergraduate popu-
lation (N=70) and on a local community college campus (Los
Angeles Trade-Technical College, N=25). USC students par-
ticipated in exchange for course credit and community partic-
ipants were compensated for their time at $15 per hour, pro-
rated at 20 minute intervals. No requirements were placed on
age, but due to recruitment populations, 80% of participants
were between the ages of 19 and 26 (mean=22, std=6.25).

Cognitive Tests

To test participants’ language abilities, we used the reading
span task (Daneman & Carpenter, |1980) that was developed
to assess verbal working memory and the speech perception
in noise task (SPiN, |[Kalikow et al.[[1977) that was developed
to assess functional hearing. The reading span task presents
sets of sentences to be read aloud while participants main-
tain the last word of each sentence in memory. At the end
of a set, participants are tested on how many sentence-final
words they can recall, and set length is increased until they
cannot complete the task. Testing is terminated when partic-
ipants cannot completely recall any of the three sets of sen-
tences at a particular set length. The SPiN consists of short
sentences presented over headphones in 12 talker babble (6
female, 6 male). Participants must identify the final word
of the target sentence. We used recordings from the Nation-
wide Speech Project (Clopper & Pisoni, 2000) to create the
stimuli and present trials at +6dB SNR which produced large
individual differences in accuracy in pilot results. We choose
these tests due to their importance as widely used individ-
ual difference measures in clinical populations to diagnose
age-related decline (Byrne, [1998), aphasia (Caspari, Parkin-
son, LaPointe, & Katz,|1998)), Alzheimer’s (Kempler, Almor,
Tyler, Andersen, & MacDonald, [1998), and schizophrenia

(Stone, Gabrieli, Stebbins, & Sullivan,|1998)). We also choose
these tests for the important — but often unacknowledged —
role language processing is likely to play in both.

Survey

We constructed an online survey (approx. 20 minutes long)
that probes participants’ current and formative media con-
sumption habits, elicits short language production passages,
and collects basic demographic information. We use this tool
to glean each participant’s media diet, which forms the ba-
sis for later linguistic grouping and analysis. We use the
language obtained from the sources participants report as a
model for participants’ actual language input and a proxy of
language experience.

Equipment

Subjects sat in a noise attenuating booth and participated in
the survey and behavioral tasks on a desktop PC computer.
USC participants were allowed to complete the survey on-
line prior to their lab session. Participants first completed
the reading span task, followed by the SPiN, and finally the
survey. The reading span task was administered and scored
by a researcher to ensure subjects read aloud continuously.
Upon completion of each sentence, the researcher advanced
the display to the next sentence in the set and solicited ver-
bal responses at the end of each set. After a brief training
phase, participants were not given feedback on their perfor-
mance and were not told their failure had caused the end of
the test, simply that it had ended. The SPiN test was ad-
ministered using Paradigm experiment software; participants
typed their responses into a free-response text box. Trials be-
gan after a 500ms delay once participants had submitted their
response. Stimuli were presented at a comfortable level, stan-
dard across participants.

Clustering

We create a media source space in which each dimension rep-
resents a reported source (e.g. movie) collected in our survey.
Each participant is thus represented as a binary vector in this
space, with 1s in dimensions corresponding to sources they
consume, and Os in those they do not. To ensure each dimen-
sion is informative (and reduce the dimensionality), we only
represent sources reported 10 or more times — thus avoiding
dimensions that would only differentiate a few participants
(i.e. the rest would all receive Os in that dimension). This
leaves 314 dimensions along which participants were clus-
tered using the k-means algorithm (Lloyd, |1982). Figure
shows the distortion values for different numbers of clusters,
revealing 3 clusters to be the inflection point at which more
clusters provide only marginal returns. The algorithm takes
this point as the true number of clusters because increasing
the number of clusters beyond this simply subdivides the true
clusters, thus over-fitting.
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Figure 1: K-means clustering reveals 3 clusters of partici-
pants in our media consumption space. This is evidenced by
the inflection in distortion decrease that occurs at k = 3.

Corpora Construction

We aggregate language data from the sources participants
reported in our survey for further linguistic analysis. This
produces two corpora (one for each cluster) that allow us to
model their language differences. We fully acknowledge the
difference between consuming sources as text, as our models
do, and speech, as our participants do. Despite this, however,
text fully captures the regularities of lexical and supra-lexical
features we expect to influence performance on our behav-
ioral tasks.

We collected each corpus by scraping repositories of televi-
sion scripts (Springfield! Springfield!), movie subtitles (YIFY
Subtitles)), and song lyrics (the Genius API). For TV and mu-
sic, we collected all the content for one show (e.g. all the
scripts from Law & Order) or one artist (e.g. all the songs by
Bruno Mars). We then pre-process these sources by removing
anything the viewer would not hear (e.g. stage directions) and
anything non-linguistic (e.g. non-alphanumeric characters or
non-verbal noises).

Language and Surprisal Modeling

To model the language statistics of each cluster’s corpus,
we use 5-gram language models with backoff (Katz, |1987).
These models estimate the likelihood of a sentence as the
product of the conditional probabilities of its words given the
words that precede them. Thus for a sentence of length L, the
likelihood is:

L
HP(W[|W[,<H,1)...W1,1) (1)

=1
where 7 is a hyperparameter set to control the number of
preceding words considered for context (n = 1 is simply the
marginal probability). Because the probability of encounter-
ing the preceding string of words in training decreases as the
length of the string increases, backoff allows the algorithm to
decrease n until the preceding string has been seen in training

(thus allowing the conditional probability to be estimated).
Therefore, while we initially set our n = 5, probabilities may
be calculated given less prior context.

In addition to the 5-gram model which proceeds from the
beginning of a sentence seeking to model its probability, we
also model the surprisal associated with encountering the fi-
nal word of the sentence. This is a particularly important
quantity considering both our behavioral tasks use sentence
final words as their testing target. While in theory the model
aligns with the concept of cloze probability — the probabil-
ity of the sentence-final word given every preceding word:
P(wgp|wi...wp—1) — this rarely occurs in practice given the
sparseness of a training corpus. To model this, we adopt a
similar method to n-gram models with backoff. We calculate
the conditional probability of the last word given the n — 1
preceding terms:

P(wrlwp—(n—1)---wL-1) 2

where we initialize n = 5 and reduce its value until the pre-
ceding string has been encountered in the training corpus
(n =1 is simply the marginal probability of the word occur-
ring sentence-finally).

Results
Clustering

The clustering included all reported media sources and re-
vealed three clusters based on participants’ consumption
habits. Despite a substantial drop in distortion from 2 clusters
to 3 (see Fig. [I] for distortions), cluster O proved too small to
analyze: it contains just 2 participants. Its size precludes both
behavorial analysis, which requires an adequate number of
samples to be statistically feasible, and computational mod-
eling, which requires a corpus built from an adequate number
of reported sources (aggregated across a cluster). Given these
limitations, the following analyses will only use clusters 1 and
2 as the sample population (still 98% of the original sample).
This clustering, far from an artifact of random seed, proved
stable across random restarts. Over 1000 iterations, on aver-
age 75% of participants were re-clustered in the same groups
(see Behavioral Data for the effects on statistical tests).

Regarding cluster membership, we expected USC students
and community members to be unevenly distributed between
clusters, and this was true, although not categorically. As seen
in Table [I] the two are relatively balanced across clusters.
Thus, cluster membership and a priori group membership are
treated as orthogonal in the following analyses.

In addition to the a priori population, we examined the
distribution of traditionally considered covariates across the
clusters. We wanted to test whether self-reported media con-
sumption provided new information beyond existing mea-
sures (i.e. we were not just capturing an existing highly cor-
related dimension of variance). As seen in Table [I] typical
demographic variables were fairly evenly distributed across
the clusters. One-way chi-square tests revealed that none of
the demographic variables significantly differed from an even
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split across clusters (i.e. the expected values if cluster and
variable were independent).

. Cluster Ns Cluster %
Variable Level i ‘ 5 i ‘ 3
Population USC 34 24 59% | 41%

P LATTC 71 13 || 35% | 65%
Female 33 21 61% | 39%

Gender] Male 7| 16 || 30% | 70%
High School | 10 10 50% | 50%

Associate 4 4 50% | 50%

Schooling | Some College | 19 15 56% | 44%
Bachelor’s 7 6 54% | 46%

Master’s 1 2 33% | 66%

Mono- True 10 11 48% | 52%
lingual False 31 26 54% | 46%
High 13 13 50% | 50%

Efsorsélf' Medium 16 10 || 62% | 38%
P Low 12| 14 || 46% | 54%

Table 1: The distribution of traditionally considered covari-
ates across clusters is fairly even. We observe no obvious im-
balance between clusters along any demographic dimensions
our survey measured. One-way chi-square tests support this.

Given the orthogonality of self-reported media consump-
tion to traditional demographic variables, we hereafter focus
on the observed dimension of variance: media diet. We probe
how the clusters differ in their media habits in order to delin-
eate their makeup. We examine the clusters’ centroids to cal-
culate which dimensions (i.e. sources) they differ maximally
along. This provides a measure of which media sources are
most distinct between clusters. We find the following sources
to be the 5 most different between clusters 1 and 2 and pro-
vide the difference in mean consumption between the two
(i.e. X1 —X») in parentheses: Star Wars (.64, specific films
reported in the series were less powerful, on the order of .11-
A7), Yes! (-.47), CNN (-.26), People (-.12), and Harry Potter
(-.12). We hesitate to draw any conclusive generalities on the
two clusters’ media diets, but at a glance it appears that clus-
ter 1 consumes lots of high fantasy (Star Wars, Lord of the
Rings, The Chronicles of Narnia, etc.) while cluster 2 con-
sumes more nonfiction (Yes!, CNN, People, etc.).

Behavioral Data

As seen in Figure 2] the SPiN task revealed a main effect of
cluster, F(1,76) =7.30, p < .01, but no main effect of popu-
lation and no interaction between the two. In the reading span
data, we again find a main effect of cluster, F(1,76) = 4.05,
p < .05, and a main effect of population F(1,76) = 13.57,
p < .001, and no interaction between the two. In our 1000
clustering iterations, 63% of iterations revealed statistically

10ne participant in cluster 1 chose not to report gender.

Zparticipants reported their SES on a continuous scale. Here, we
bin responses into 3 quantiles to report distribution across clusters.

significant effects of cluster on the SPiN task (at o = .05).
This was not replicated with the span task, however: only 4%
of our iterations found statistically significant effects.
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Figure 2: Results from the SPiN test reveal a significant dif-
ference between clusters but not populations. Reading span
also shows an effect of cluster, but a larger effect of popula-
tion. We observe no significant interactions.

The span test will play a minor role in further analyses,
due to the difficulty in handling test result data and its scoring.
Because the span task is terminated whenever participants fail
to recall a set, participants provide unequal numbers of ob-
servations. The analyses are additionally constrained by the
small number of items a typical participant completes. While
observations exist for items later in the test, they are for a
few extraordinary participants. This presents a problem not
only in the paucity of observations, but also in the fact that
these participants are unrepresentative of the general sample
in their task abilities. As such, both item-level statistics and
graphical representations are challenging.

Our survey obtains several pieces of demographic infor-



mation that are traditionally considered relevant covariates of
performance on our cognitive tasks, such as socioeconomic
status (SES, self-reported), age, education level, and mono-
lingual status. None of these correlated significantly with per-
formance on either task.

Language Media Input Modality

The above findings of differences between cluster perfor-
mances motivated us to explore differences between clusters’
survey behavior (other than the categorical responses which
were used in clustering) to explain their performance data.
In particular, we wondered whether the stronger task perfor-
mances of cluster 1 might be due to increased experience with
the tasks of speech perception and reading.

To probe this, we tested whether cluster 1 reported signifi-
cantly more speech sources (TV, Movies, Music, and News
shows) and significantly more text sources (Books, News-
papers, Magazines, Online News, and other online reading)
than cluster 2. Indeed, we find that cluster 1 participants
report significantly more listening on average than cluster
2: 1(42.82) = 3.09,p =< .005,d = 0.67 (a medium effect).
We also find that cluster 1 participants report significantly
more reading on average than cluster 2: #(72.6) = 5.10,p <
.001,d = 1.13 (a large effect). This may indicate an effect
of modality-specific training on task performance. To probe
this, we test the correlation between the number of speech
sources a participant reports and their SPiN task performance.
We test rank correlation rather than linear correlation as we
are unsure of the linearity of the relationship between number
of sources and modality-specific benefit, as well as to control
for the effect of outliers in both performance and reporting
volume. We observe a significant correlation between the
two: p(76) = .31,p = .005. We do not, however, observe
a significant correlation between number of text sources and
span performance.

We also tested whether past modality preference (solicited
with “when you were growing up...”) would relate to current
modality preference. We find a strong correlation between
the amount of spoken language items reported growing up
and amount of current items reported: r(76) = .91, p < .001.
This correlation extends to the number of written language
items, although not as strongly: r(76) = .49, p < .001.

Language Models

To evaluate the claim that our language models were captur-
ing meaningful statistical regularities in the language of each
cluster’s corpus, we tested whether the log-likelihood pro-
duced by a model for each of the test items would correlate
with mean performance on those items for the cluster. We
do not observe a significant correlation between cluster 1’s
5-gram model and performance on either the SPiN (r(48) <
0.01) or span (r(25) = —0.01). We also observe no significant
correlation between cluster 2’s 5-gram model and its perfor-
mances on SPiN (7(48) = —0.02) or span (r(25) < 0.01). Ad-
ditionally, we tested the correlation between cluster 1’s 5"-
order surprisal model and its performance and found no cor-

Lack of correlation (r=0.09) between
maodel differences and SPiMN performance differences
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Figure 3: The non-correlation of cluster performance differ-
ences with model likelihood differences indicates the statisti-
cal information captured by the models is a poor predictor of
behavioral performance. The significant cluster performance
difference can be seen here by the majority of items occurring
above 0-difference on the y-axis. A LMS-Regression line is
drawn in red for reference.

relations with SPiN (r(48) = 0.07) or span (r(25) = —0.09).
Similar results were obtained for cluster 2 (SPiN: r(48) =
0.21, span: r(25) =0.02).

In addition to modeling statistical properties of particular
items, we also tested whether the difference between the lan-
guage and surprisal models might capture the significant dif-
ferences we see on our behavioral tasks. This method avoids
any idiosyncrasies of particular items (as comparisons are
within item) and instead captures any language differences of
media sources. We again find a lack of significant correlation
between 5-gram likelihood differences and task performance
for both the SPIN ((48) = 0.09) and span (r(25) = .25).
Similar results are observed for the 5"-order surprisal model
(SPiN: r(48) < 0.01, span: r(25) =0.08). As shown in Fig.[3]
differences between the model likelihoods are close to zero
for most items, with a few outliers.

To examine the non-correlations and clustering around 0
on Fig. s x-axis, we tested the correlation between mod-
els and found strong correlations for both the SPiN (r(48) =
0.94, p < .001) and span (r(86) = 0.97, p < .001) test. These
strong correlations, coupled with linear regression slopes of
B1 = 0.96 (SPiN) and B; = 0.94 (span) imply nearly iden-
tical log-likelihood scores between models despite training
on categorically different sources. While the results reported
here are specific to 5-gram language models and 5%™-order
surprisal models, other lower-ordered models of both yielded
similar results.

Discussion

We observed significant performance differences on a speech
perception in noise task and a working memory task between



clusters of participants derived from self-reported media con-
sumption. These differences were above and beyond differ-
ences driven by a priori participant groups — students at a
university vs. participants from the surrounding community.
This clustering was robust to randomness and orthogonal to
any traditionally considered demographic variables. As we
have no reason to believe that the tests’ target constructs sys-
tematically vary between our clusters, we conclude that me-
dia diet represents an uncorrelated latent variable moderating
task performance. To our knowledge, our identifying media
consumption as a significant orthogonal predictor of cogni-
tive task performance is a novel contribution of this work.

This novel predictor is surprisingly powerful at explaining
language test performance considering its complete lack of
explicit linguistic information. In pursuing a linguistic ex-
planation for our finding, we used statistical language models
trained on sources participants reported consuming to analyze
test items. These models did not identify particular stimuli
driving performance differences, and we found no obvious
differences in how well stimuli fit our models. However, a
follow-up study we performed with more complex recurrent
neural models did in fact reveal a correlation between mod-
els trained on our media corpora and behavioral performance
(Courtland et al.l 2019). This implies the statistics used here
are not sophisticated enough. Cloze probability, for exam-
ple, is computed as a simple ratio of the tokens of a word in
context to all tokens in that exact context in the corpus.

Also of note is the highly significant difference in the num-
ber of sources reported by cluster 1 compared with cluster
2. It is possible that the greater number of sources indi-
cates that cluster 1 contains more voracious consumers of me-
dia than cluster 2. This increased media consumption in the
modalities of our tests may be providing cluster 1 members
with modality-specific training they leverage at test time. In-
deed, the correlation we observed between number of speech
sources reported and SPiN performance supports this expla-
nation. This is especially plausible given that watching a TV
show or movie involves perceiving character dialog often ob-
scured by various sources of noise (soundtrack, sound effects,
etc.). Itis also possible, however, that the increased responses
and performance from cluster 1 is indicative not of their in-
creased modality-specific training but rather a latent variable
such as attentiveness or enthusiasm at participating in all as-
pects of the study.

It should be mentioned that participants’ responses may
reflect a (possibly implicit) choice to make specific habits
known in the context of the survey. Given the importance of
shared experience in forming relationships, what pieces and
types of information people share and what they keep pri-
vate often acts as a type of signaling that forms the basis of
social cohesion. Thus, media diet survey responses may be
more appropriately interpreted as signalling membership in
a language community than literally reflecting the language
practices of that community. Indeed, the vast majority of
items in the corpora are professionally produced texts, which

are likely to differ less than spontaneous spoken and written
communication. In future work, we plan to obtain rich, nat-
uralistic language samples in addition to the media corpora
included so far to strengthen the evidence found here.

The identification of a dimension (other than the target con-
struct) that test performance differs significantly along brings
into question not only specific test validity probed here, but
also the validity of the entire practice of test item standardiza-
tion. This is true whether this dimension is categorical media
consumption, shown here, or the linguistic content of the me-
dia, shown in|Courtland et al.|(2019). Tests that use language
to probe target constructs must take the language of their test
into account — not as a static entity to be standardized, but
as the diverse and dynamic communication medium that it is.
Test validity relies on the ability to generalize a test’s result
to participants’ everyday behavior. This is only valid if the
test is representative of the language they encounter in their
daily lives (Coleman), |1964)). Thus, tests employing standard-
ized language not only contain inherent inequity for those less
familiar with the test language, they are also less valid.

Here we aim to show that participants’ diverse language
experiences must be taken into account when diagnostic tools
like those tested here are designed. Ideally, given the unique
nature of language experience, test creators should strive to
create tests that present equal difficulty to each participant by
using personalized test language. This step to ensure equity
is especially important given that test scores cannot simply be
adjusted for using traditionally defined dialectal boundaries —
as demonstrated here by the uninformativeness of the demo-
graphic variables that define these boundaries.

Generating equitable stimuli is a difficult or possibly in-
feasible task for human researchers, but could potentially be
automated using generative models. If such models were
driven by statistics that are highly representative of partici-
pants’ language experience, they may do a better job of cap-
turing cognitive constructs without smuggling in variability
resulting from differences in language experience. Perhaps
the most exciting future direction of this research will be to
facilitate using more representative language statistics in de-
signing stimuli for cognitive tests. The study of how language
experience influences test performances that we take here rep-
resents a first step to understanding and mitigating this test
inequity.
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